Unconditional convergence of DIRK schemes applied to dissipative evolution equations
نویسندگان
چکیده
In this paper we prove the convergence of algebraically stable DIRK schemes applied to dissipative evolution equations on Hilbert spaces. The convergence analysis is unconditional as we do not impose any restrictions on the initial value or assume any extra regularity of the solution. The analysis is based on the observation that the schemes are linear combinations of the Yosida approximation, which enables the usage of an abstract approximation result for dissipative maps. The analysis is also extended to the case where the dissipative vector field is perturbed by a locally Lipschitz continuous map. The efficiency and robustness of these schemes are finally illustrated by applying them to a nonlinear diffusion equation.
منابع مشابه
Dimension splitting for quasilinear parabolic equations
In the current paper, we derive a rigorous convergence analysis for a broad range of splitting schemes applied to abstract nonlinear evolution equations, including the Lie and Peaceman–Rachford splittings. The analysis is in particular applicable to (possibly degenerate) quasilinear parabolic problems and their dimension splittings. The abstract framework is based on the theory of maximal dissi...
متن کاملHigh Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملAdditive domain decomposition operator splittings – convergence analyses in a dissipative framework
We analyze temporal approximation schemes based on overlapping domain decompositions. As such schemes enable computations on parallel and distributed hardware, they are commonly used when integrating large-scale parabolic systems. Our analysis is conducted by first casting the domain decomposition procedure into a variational framework based on weighted Sobolev spaces. The time integration of a...
متن کاملConvergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations
We present a convergence analysis for the implicit-explicit (IMEX) Euler discretization of nonlinear evolution equations. The governing vector field of such an equation is assumed to be the sum of an unbounded dissipative operator and a Lipschitz continuous perturbation. By employing the theory of dissipative operators on Banach spaces, we prove that the IMEX Euler and the implicit Euler scheme...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کامل